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Kaggle Competition: Springleaf

Objective: Predict whether customers will
respond to a direct mail loan offer

 Customers: 145,231
* |Independent variables: 1932
* “Anonymous” features

* Dependent variable: ™
— target = 0: DID NOT RESPOND ., _
— target = 1: RESPONDED TR e

* Training sets: 96,820 obs. (W)

» Testing sets: 48,411 obs.



76.7%

Dataset facts

* R package used to read file:
data.table::fread

0 1
Class 0 and 1 count

numerical character constant

« Character variables: 51 : Ty o
* Constant variables: 5
* Variable level counts:
— 67.0% columns have I
levels <= 100 ..III.

11~20 21~30 31~40 51~100 101~1000  1001~10000 10001~145172

Count of levels for each column

« Target=0 obs.: 111,458
« Target=1 obs.: 33,773
 Numerical variables: 1,876
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Missing values
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Challenges for classification

* Huge Dataset (145,231 X 1932)

* “Anonymous” features

* Uneven distribution of response variable
« 27.6% of missing values

* Deal with both numerical and categorical
variables

* Undetermined portion of Categorical
variables

« Data pre-processing complexity



Data preprocessing

Remove ID and target

Character

variable

Low level (Gender,
geo location) |

fphone}

High level counts

Replace [] and -1 as NA

Remove duplicate cols
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Replace NA by median

Regard NA as a new group

Replace NA randomly

( Remove low variance cols )
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Principal Component Analysis

Explained variance PC500

Py When PC is close to 400,
sl f it can explain 90% variance.
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LDA: Linear discriminant analysis

 We are interested in the most discriminatory direction,
not the maximum variance.
* Find the direction that best separates the two classes.
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Methodology

K Nearest Neighbor (KNN)

» Support Vector Machine (SVM)

* Logistic Regression

 Random Forest

« XGBoost (eXtreme Gradient Boosting)
» Stacking



K Nearest Neighbor (KNN)
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Support Vector Machine (SVM)

* EXxpensive; takes long time for each run
 (Good results for numerical data

| Accuracy
matrix

Overall 78.1%

Truth 0 19609 483 Target = 1 13.3%
1 5247 803 Target =0 97.6%



Logistic Regression

—

- Logistic Model

1
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X

» Logistic regression is a regression model where the

dependent variable is categorical.

 Measures the relationship between dependent variable and
iIndependent variables by estimating probabilities



Logistic Regression
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Random Forest

* Machine learning ensemble algorithm
-- Combining multiple predictors

« Based on tree model

For both regression and classification
« Automatic variable selection
 Handles missing values

* Robust, improving model stability and accuracy



Random Forest
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Error
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Random Forest

Tree number(500) vs Misclassification Error
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*  Overall

* Target =0

trees

matrix

0 1
Truth 0 36157 1181
1 8850 2223
T ey
Overall 79.3%
Target = 1 20.1%
Target=0 96.8%



XGBoost

« Additive tree model: add new trees that complement the already-built
ones

« Response is the optimal linear combination of all decision trees

» Popular in Kaggle competitions for efficiency and accuracy

Additive tree model
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Greedy Algorithm
Error
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XGBoost

« Additive tree model: add new trees that complement the already-built
ones

« Response is the optimal linear combination of all decision trees

» Popular in Kaggle competitions for efficiency and accuracy
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Error rate

XGBoost

Error rate Vs. Trees
Confusion . ..
o Test error matrix
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Methods Comparison
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Winner or Combination ?



Stacking

- Main ldea: Learn and combine multiple classifiers

Train Test

A3

ase learner C

Final
Meta
Base learner C2 features prediction

Base learner C

A

Base learners Meta learner




Generating Base and Meta Learners

- Base model—efficiency, accuracy and diversity
= Sampling training examples
= Sampling features
= Using different learning models

 Meta learner

= Majority voting |
= Weighted averaging Unsupervised

= Kmeans
= Higher level classifier — Supervised(XGBoost)



Stacking model
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Stacking Results

Accuracy of Base Model
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Stacking Results
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Summary and Conclusion

« Data mining project in the real world
» Huge and noisy data
« Data preprocessing

» Feature encoding
= Different missing value process:

New level, Median / Mean, or Random assignment
» Classification techniques

= Classifiers based on distance are not suitable
= Classifiers handling mixed type of variables are preferred
= (Categorical variables are dominant

= Stacking makes further promotion
« Biggest improvement came from model selection, parameter tuning,
stacking
* Result comparison: Winner result: 80.4%
Our result: 79.5%
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